Stability estimates for h-p spectral element methods for general elliptic problems on curvilinear domains

نویسندگان

  • PRAVIR DUTT
  • SATYENDRA TOMAR
  • Pravir Dutt
  • Satyendra Tomar
چکیده

In this paper we show that the h-p spectral element method developed in [3,8,9] applies to elliptic problems in curvilinear polygons with mixed Neumann and Dirichlet boundary conditions provided that the Babuska–Brezzi inf–sup conditions are satisfied. We establish basic stability estimates for a non-conforming h-p spectral element method which allows for simultaneous mesh refinement and variable polynomial degree. The spectral element functions are non-conforming if the boundary conditions are Dirichlet. For problems with mixed boundary conditions they are continuous only at the vertices of the elements. We obtain a stability estimate when the spectral element functions vanish at the vertices of the elements, which is needed for parallelizing the numerical scheme. Finally, we indicate how the mesh refinement strategy and choice of polynomial degree depends on the regularity of the coefficients of the differential operator, smoothness of the sides of the polygon and the regularity of the data to obtain the maximum accuracy achievable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel h-p Spectral Element Methods for Elliptic Problems on Non-smooth Domains

We propose a new parallel h-p Spectral element method to solve elliptic boundary value problems with mixed Neumann and Dirichlet boundary conditions on non-smooth domains. The method is shown to be exponentially accurate and asymptotically faster than the standard h-p finite element method. We use the auxiliary mapping of the form of z = ln ξ. The spectral element functions we use are fully non...

متن کامل

Nonconforming h - p spectral element methods for elliptic problems

In this paper we show that we can use a modified version of the h-p spectral element method proposed in [6,7,13,14] to solve elliptic problems with general boundary conditions to exponential accuracy on polygonal domains using nonconform-ing spectral element functions. A geometrical mesh is used in a neighbourhood of the corners. With this mesh we seek a solution which minimizes the sum of a we...

متن کامل

On the Stability and Convergence of Higher-order Mixed Finite Element Methods for Second-order Elliptic Problems

We investigate the use of higher-order mixed methods for secondorder elliptic problems by establishing refined stability and convergence estimates which take into account both the mesh size h and polynomial degree p . Our estimates yield asymptotic convergence rates for the pand h p-versions of the finite element method. They also describe more accurately than previously proved estimates the in...

متن کامل

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

Parallel h-p Spectral Element Method for Elliptic Problems on Polygonal Domains

Summary: Spectral element methods (SEM) exhibit exponential convergence only when the solution of the problem is sufficiently regular. However, the solution develops a singularity when the boundary of the domain is non-smooth. The accuracy of the SEM is then deteriorated and they offer no advantage over low order methods. Such problems frequently occur in many important physical applications, f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003